Apakah compatibility dan reputasi aplikasi menjadi penentu perilaku konsumen untuk menggunakan pembayaran seluler?

Femmy Effendy, Ratih Hurriyati, Disman Disman, Heny Hendrayati

Abstract


Penelitian ini menggabungkan Innovation Diffusion Theory (IDT) dan Trust Building Model Theory , variabel compatibility atau kesesuaian dan reputation atau reputasi digunakan untuk mengukur niat dan aktual penggunaan pembayaran seluler yang ada di Indonesia. Hasil uji deskriptif menyatakan bahwa OVO, Go-Pay dan Dana menjadi tiga besar pilihan aplikasi para responden yang diteliti. Jenis penelitian ini menggunakan jenis penelitian kuantitatif. Sample yang digunakan adalah sebanyak 143 responden yang didapatkan  dari berbagai kalangan. Data dikumpulkan dengan menggunakan teknik purposive sampling dan dengan instrumen angket dan pengukuran menggunakan  skala semantic deferensial. Pendekatan analisis jalur yang diolah dengan persamaan model struktural menggunakan Lisrel 8.7. Hasil penelitian menunjukkan bahwa compatibility suatu aplikasi berpengaruh signifikan terhadap niat dan aktual penggunaan pembayaran seluler sedangkan reputation  dari aplikasi yang digunakan  tidak berpengaruh secara signifikan terhadap niat dan aktual penggunaan pembayaran seluler. Penelitian ini menyimpulkan bahwa aplikasi yang sesuai dan cocok dengan kebutuhan konsumen akan selalu menjadi produk yang dipilih.


Keywords


Compatibility; innovation diffusion theory (idt); reputation; trust building model theory (tbm)

References


Agudo-Peregrina, Á. F., Hernández-García, Á., & Pascual-Miguel, F. J. (2014). Behavioral intention, use behavior and the acceptance of electronic learning systems: Differences between higher education and lifelong learning. Computers in Human Behavior, 34, 301–314. https://doi.org/10.1016/j.chb.2013.10.035

Awang, Z. (2014). Validating the Measurement Model : Cfa. Structural Equation Modelling Using Amos Grafic.

Cleff, T. (2014). Exploratory Data Analysis in Business and Economics. In Exploratory Data Analysis in Business and Economics. https://doi.org/10.1007/978-3-319-01517-0

De Reuver, M., Verschuur, E., Nikayin, F., Cerpa, N., & Bouwman, H. (2015). Collective action for mobile payment platforms: A case study on collaboration issues between banks and telecom operators. Electronic Commerce Research and Applications. https://doi.org/10.1016/j.elerap.2014.08.004

DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1080/07421222.2003.11045748

Etikan, I. (2016). Comparison of Convenience Sampling and Purposive Sampling. American Journal of Theoretical and Applied Statistics. https://doi.org/10.11648/j.ajtas.20160501.11

Fauzi, A., Widodo, T., & Djatmiko, T. (2018). Pengaruh Behavioral Intention Terhadap Use Behavior Pada Penggunaan Aplikasi Transportasi Online (Studi Kasus Pada Pengguna Go-Jek Dan Grab Di Kalangan Mahasiswa Telkom University ). E-Proceeding of Management, 5, no.2(October), 1195–1200.

George, A. (2018). Determinants of Behavioral Intention To Use Mobile Wallets-a Conceptual Model. 5(5),52–62. http://www.iaeme.com/JOM/index.asp52http://www.iaeme.com/JOM/issues.asp?JType=JOM&VType=5&IType=5JournalImpactFactor%0Awww.jifactor.comhttp://www.iaeme.com/JOM/issues.asp?JType=JOM&VType=5&IType=5

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis. In Vectors. https://doi.org/10.1016/j.ijpharm.2011.02.019

Haynes, D. F., & Cahn, N. (2012). 25-131-1-PB.pdf. 1, 56–60.

Lleras, C. (2004). Path Analysis. Encyclopedia of Social Measurement, 3, 25–30. https://doi.org/10.1016/B0-12-369398-5/00483-7

Lou, A. T. F., & Li, E. Y. (2017). Integrating innovation diffusion theory and the technology acceptance model: The adoption of blockchain technology from business managers’ perspective. Proceedings of the International Conference on Electronic Business (ICEB), 2017-Decem, 299–302.

Maharani, S., & Indriani, F. (2017). Analisis Faktor-Faktor Yang Mempengaruhi Initial Trust Serta Dampaknya Terhadap Minat Beli Konsumen Pada Toko Online. Diponegoro Journal Of Management, 6(1997), 1. https://journal.uii.ac.id/JSB/article/download/3912/3498

Mcknight, D., Choudhury, V., & Kacmar, C. (“Chuck”). (2002). The Impact of Initial Consumer Trust on Intentions to Transact with a Web Site: A Trust Building Model. The Journal of Strategic Information Systems, 11, 297–323. https://doi.org/10.1016/S0963-8687(02)00020-3

Peng, H., Xu, X., & Liu, W. (2011). Drivers and barriers in the acceptance of mobile payment in China. 2011 International Conference on E-Business and E-Government, ICEE2011 - Proceedings, 7911–7914. https://doi.org/10.1109/ICEBEG.2011.5887081

Ploder, A., & Eder, A. (2015). Semantic Differential. In International Encyclopedia of the Social & Behavioral Sciences: Second Edition. https://doi.org/10.1016/B978-0-08-097086-8.03231-1

Sarwono, J. (2010). Pengertian Dasar Structural Equation Modeling ( Sem ). Jurnal Ilmiah Manajemen Bisnis, 173–182.

Shao, Z., Zhang, L., Li, X., & Guo, Y. (2019). Antecedents of trust and continuance intention in mobile payment platforms: The moderating effect of gender. Electronic Commerce Research and Applications, 33, 100823. https://doi.org/10.1016/j.elerap.2018.100823

Su, P., Wang, L., & Yan, J. (2018). How users’ Internet experience affects the adoption of mobile payment: a mediation model. Technology Analysis and Strategic Management, 30(2), 186–197. https://doi.org/10.1080/09537325.2017.1297788

Sugiyono. (2015). Metode Penelitian. Metode Penelitian.

Susilo, A. Z., Iksan Prabowo, M., Taman, A., Pustikaningsih, A., & Samlawi, A. (2019). A comparative study of factors affecting user acceptance of go-pay and OVo as a feature of Fintech application. Procedia Computer Science, 161, 876–884. https://doi.org/10.1016/j.procs.2019.11.195

Tabri, N., & Elliott, C. M. (2012). Principles and Practice of Structural Equation Modeling. Canadian Graduate Journal of Sociology and Criminology. https://doi.org/10.15353/cgjsc-rcessc.v1i1.25

The-Innovation-Diffusion-Process-Source-Rogers-2003-and-Chang-2010. (n.d.).

Williams, M. D., Davies, G. H., Roderick, S., & Clement, M. (2017). Risk, trust, and compatibility as antecedents of mobile payment adoption. AMCIS 2017 - America’s Conference on Information Systems: A Tradition of Innovation, 2017-Augus(1989), 1–10.




DOI: http://dx.doi.org/10.29264/jinv.v16i2.7583

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 INOVASI


Indexing: